Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges.
نویسندگان
چکیده
This study reports the first intracellular recordings obtained during spontaneous, genetically determined spike and wave discharges (SWDs) in nucleus reticularis thalami (NRT) neurons from the genetic absence epilepsy rats from Strasbourg (GAERS), a model that closely reproduces the typical features of childhood absence seizures. A SWD started with a large hyperpolarization, which was independent of the preceding firing, and decreased in amplitude but did not reverse in polarity up to potentials >/= -90 mV. This hyperpolarization and the slowly decaying depolarization that terminated a SWD were unaffected by recording with KCl-filled electrodes. The prolonged (up to 15 action potentials), high-frequency bursts present during SWDs were tightly synchronized between adjacent neurons, correlated with the EEG spike component, and generated by a low-threshold Ca(2+) potential, which, in turn, was brought about by the summation of high-frequency, small-amplitude depolarizing potentials. Fast hyperpolarizing IPSPs were not detected either during or in the absence of SWDs. Recordings with KCl-filled electrodes, however, showed a more depolarized resting membrane potential and a higher background firing, whereas the SWD-associated bursts had a longer latency to the EEG spike and a lower intraburst frequency. This novel finding demonstrates that spontaneous genetically determined SWDs occur in the presence of intra-NRT lateral inhibition. The unmasking of these properties in the GAERS NRT confirms their unique association with spontaneous genetically determined SWDs and thus their likely involvement in the pathophysiological processes of the human condition.
منابع مشابه
Cellular and network mechanisms of genetically-determined absence seizures.
The absence epilepsies are characterized by recurrent episodes of loss of consciousness associated with generalized spike-and-wave discharges, with an abrupt onset and offset, in the thalamocortical system. In the absence of detailed neurophysiological studies in humans, many of the concepts regarding the pathophysiological basis of absence seizures are based on studies in animal models. Each o...
متن کاملSynchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
The cerebral cortex and thalamus constitute a unified oscillatory machine displaying different spontaneous rhythms that are dependent on the behavioral state of vigilance. In vivo multi-site recordings from a variety of neocortical areas and related thalamic nuclei in cat, including dual simultaneous intracellular recordings, demonstrate that corticofugal volleys are effective in synchronizing ...
متن کاملEvolving concepts on the pathophysiology of absence seizures: the cortical focus theory.
Four main theories on the pathophysiology of generalized absence seizures have been proposed. The "centrencephalic" theory, proposed in 1954, suggested that discharges originate from a deep-seated diffusely projecting subcortical pacemaker in the midline thalamus. This concept was refined in 1991 with the "thalamic clock" theory, implying that the reticular thalamic nucleus contains the pacemak...
متن کاملIsolated P/Q Calcium Channel Deletion in Layer VI Corticothalamic Neurons Generates Absence Epilepsy.
UNLABELLED Generalized spike-wave seizures involving abnormal synchronization of cortical and underlying thalamic circuitry represent a major category of childhood epilepsy. Inborn errors of Cacna1a, the P/Q-type voltage-gated calcium channel α subunit gene, expressed throughout the brain destabilize corticothalamic rhythmicity and produce this phenotype. To determine the minimal cellular lesio...
متن کاملThalamic synchrony and dynamic regulation of global forebrain oscillations.
The circuitry within the thalamus creates an intrinsic oscillatory unit whose function depends critically on reciprocal synaptic connectivity between excitatory thalamocortical relay neurons and inhibitory thalamic reticular neurons along with a robust post-inhibitory rebound mechanism in relay neurons. Feedforward and feedback connections between cortex and thalamus reinforce the thalamic osci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2002